MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

نویسندگان

چکیده

We present a novel self-supervised learning approach for conditional generative adversarial networks (GANs) under semi-supervised setting. Unlike prior approaches which often involve geometric augmentations on the image space such as predicting rotation angles, our pretext task leverages label space. perform augmentation by randomly sampling sensible labels from of few labelled examples available and assigning them target to abundant unlabelled same distribution that ones. The images are then translated grouped into positive negative pairs their labels, acting training involves optimising an auxiliary match loss discriminator's side. tested method two challenging benchmarks, CelebA RaFD, evaluated results using standard metrics including Fr\'{e}chet Inception Distance, Score, Attribute Classification Rate. Extensive empirical evaluation demonstrates effectiveness proposed over competitive baselines existing arts. In particular, surpasses baseline with only 20% used train baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...

متن کامل

Semi-Supervised Learning with Generative Adversarial Networks

We extend Generative Adversarial Networks (GANs) to the semi-supervised context by forcing the discriminator network to output class labels. We train a generative model G and a discriminator D on a dataset with inputs belonging to one of N classes. At training time, D is made to predict which of N+1 classes the input belongs to, where an extra class is added to correspond to the outputs of G. W...

متن کامل

Semi and Weakly Supervised Semantic Segmentation Using Generative Adversarial Network

Semantic segmentation has been a long standing challenging task in computer vision. It aims at assigning a label to each image pixel and needs significant number of pixellevel annotated data, which is often unavailable. To address this lack, in this paper, we leverage, on one hand, massive amount of available unlabeled or weakly labeled data, and on the other hand, non-real images created throu...

متن کامل

Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

In this paper we present a method for learning a discriminative classifier from unlabeled or partially labeled data. Our approach is based on an objective function that trades-off mutual information between observed examples and their predicted categorical class distribution, against robustness of the classifier to an adversarial generative model. The resulting algorithm can either be interpret...

متن کامل

Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks

Convolutional neural networks (CNNs) have recently been applied to the optical flow estimation problem. As training the CNNs requires sufficiently large amounts of labeled data, existing approaches resort to synthetic, unrealistic datasets. On the other hand, unsupervised methods are capable of leveraging real-world videos for training where the ground truth flow fields are not available. These...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-69538-5_37